High School Physics

# Current Electricity_21

## Connecting ammeter and voltmeter in physics lab

In this post, we will study a circuit diagram with ammeter and voltmeter. The goal would be to understand how to connect these meters in the circuit given in the Physics lab. You may go through our article on Ammeter and Voltmeter definition and connection if you want to revise the basics. Let’s study the […]

## Numericals on series and parallel combination of resistors class 10

In this post, we have solved a set of Numericals on series and parallel combinations of resistors for class 10 physics.

## Electricity class 10 Questions and Answers

In this post, you will find a set of selected questions and answers from the class 10 electricity chapter. This set consists of theoretical questions and numerical problems.

## Electricity Numericals class 10 worksheet

In this post, you will find a Worksheet based on the Electricity Numericals for class 10 applicable for different boards like CBSE, ICSE, and other state boards. The problems are solved as well.

CODE

## Electricity class 10 numericals

In this post, we will solve a set of Electricity class 10 Numericals. These numerical problems with the solution will be a real help for the students preparing for the class 10 examination (CBSE, ICSE, & State boards). First, find the list of formulas from the electricity chapter. And, then find the solved numerical questions.

## Limitations of Ohm’s Law

Limitations of Ohm’s Law

## Physics Numericals on electric charge current x time

In this post, we will solve a set of Physics Numericals on electric charge and its current, time relationship.

## Numerical Questions on the internal resistance & emf of a Cell

Numerical Questions on the internal resistance & emf of a Cell

## Seebeck effect

In this post, we will discuss the Seebeck effect or thermoelectric effect and other related points like thermocouple, thermoelectric emf, thermoelectric series, variation in thermoelectric emf with temperature, Neutral and Inversion temperature, etc. Seebeck effect or thermoelectric effect In 1821, German Physicist Thomas Johann Seebeck discovered that in a circuit consisting of two dissimilar metals […]

## Applications of the heating effect of current | Applications of Joule heating

In this post, we will discuss some applications of the heating effect of current (applications of Joule heating). Also, read this post on Joule Heating numerical: heating effect of electric current class 10 numericals Applications of the heating effect of current | Joule Heating Applications Here are some examples of applications of Joule heating (Applications […]

## Joule’s Law of Heating | Joule’s Law of heating class 10

In this post, we will discuss the heating effect of current, and Joule’s Law of heating. Class 10 students should find this useful as this post covers Joule’s Law of Heating class 10 syllabus. Joule’s law statement, formula, and brief explanation are also given here. Joule’s Law of Heating | Joule’s Law of Heating for […]

## Temperature coefficient of resistance – formula

The temperature dependence of resistance of a conductor can be expressed with the formula R2 = R1 ( 1 + α t), where α is the temperature coefficient of resistance of the conductor. R2 and R1 represent the resistance of the conductor at t2° centigrade and t1° centigrade respectively. In the equation, t = temperature […]

## Temperature dependence of resistivity

The variation of resistivity of a metallic conductor, an alloy, a semiconductor, or an insulator with an increase in temperature is not the same in all cases. Temperature dependence of resistivity of a metallic conductor In terms of relaxation time, the resistivity of the material of a metallic conductor is given by: ρ = (m)/(ne2τ) […]

## j = sigma e derivation for the Vector form of Ohm’s law

In this post, we will derive the equation j = sigma e and we will do the derivation using Ohm’s law equation (V=IR). Obtaining this equation vec J = σ vec E, or deriving J = σ E helps us to get the relationship between the current density, conductivity, and electric field intensity. This J = […]

## Dimension of Resistance | electric Resistance dimension

Resistance R of the conductor is the ratio of the potential difference to the current. R =V/I. Now, let’s find out the dimension of resistance. (Dimensional formula) Dimension of resistance Using equations or formulas, we are going to find out the dimension of resistance. (dimensional formula) R = V/I = [W/Q]/I =[(F s) / (I […]

## Resistivity or specific resistance (ρ)

Resistivity or specific resistance – While deriving Ohm’s Law with the help of drift velocity equations, we got the expression or formula of resistance as follows: R = [(mL)/(ne2τA)]. Here, m = mass of an electron, L = length of the conducting wire, n = electron density or number of electrons per unit volume, e […]

## Derivation of Ohm’s Law class 12 (using drift velocity equations)

Derivation of Ohm’s Law class 12 – Here, in this post, we will derive Ohm’s Law using drift velocity equations following the class 12 syllabus. Know more about the fundamentals of Ohm’s law, graph, etc. here. Derivation of Ohm’s Law class 12 Here, we will take the help of 2 equations or formulas of drift […]

## Drift velocity and mobility of an electron

In this post, we will see how the drift velocity of an electron is related to its mobility. The drift velocity of an electron can be expressed as vd = ( Ee/m) τ, where vd is the drift velocity, E is the electric field, e is the charge of an electron, and m is the […]

## Drift velocity Derivation

Drift velocity formula derivation – In this post, we will first understand the concept and definition of the drift velocity of an electron and then we will derive the drift velocity formula in terms of relaxation time and electric field.

## Drift velocity formula

In this post, we will present the drift velocity formula or equation in terms of different variables like the mobility of an electron, electric current, current density, relaxation time, electric field, potential difference or voltage, and the length of the wire. Drift velocity formula in terms of mobility When electric field E = 1 Vm-1, […]

## Electric current & shock

This post is a compilation of a set questions with answers related to electric current flow and electric shock. What levels of current are dangerous? Approximately 1 mA (0.001 A) is enough to produce a tingling sensation. 10 mA is painful. 12-20 mA is enough to paralyze muscles, making it impossible to let go. 60-100 […]

## How to use the PIV Triangle for the Electrical Power formula

The power formula expresses fundamental relationships among power, current, and voltage. On occasion, you may be asked to calculate any one of the three variables in this equation, given the other two. As a result, good mnemonics to remember is the PIV triangle. PIV triangle for the Electrical Power formula (Diagram) How to use the […]

## How to use the VIR Triangle for Ohm’s Law?

Ohm’s Law expresses fundamental relationships among voltage, current, and resistance. On occasion, you may be asked to calculate any one of the three variables in this equation, given the other two. As a result, good mnemonics to remember is the VIR triangle. VIR triangle for Ohm’s Law (Diagram) How to use the VIR Triangle for […]

## Resistance of metal increases with an increase in temperature – how?

When current flows through the material of a circuit, such as the metal of the connecting wires, the material of the circuit gets in the way of the flow of the charge. On a microscopic level, as the electrons flow through the metal they collide with the vibrating positive ion cores of the metal structure. […]

## AQA GCSE Physics – Equations & Formulae from Electricity chapter

The image below shows a list of equations and formulae from the chapter “Electricity” of the GCSE Physics syllabus. This is also helpful for all other equivalent boards like CBSE, ISC, ICSE. Equations to learn from Electricity chapter of physics syllabus

## Resistivity and Conductivity Solved numerical problems (Worked Solutions)

In this post, we have compiled a bunch of interesting numerical problems on Resistivity and Conductivity. These are Solved numerical problems (Worked Solutions). Resistivity and Conductivity numerical problems (solved worksheet) 1 ) Gold has a conductivity of 45 MS m−1. What is the resistance of a 0.01 m diameter gold connector that is 0.05m long? […]

## Kirchhoff’s Voltage law, KVL – statement, formula, example, sign convention

in any electrical circuit, the energy being converted into electrical energy (in the sources of emf) must be equal to the energy being transferred from electrical to internal, by the sinks of Potential Difference. This is Kirchhoff’s second law equivalent to conservation of energy.
ref: IB physics course book by David Homer MB-J

## Heating effect of electric current class 10 Numericals

In this post on the Heating effect of electric current class 10 Numericals, we will list down the Heating Effect formulas or Equations of electric power and energy. And, then we will solve a bunch of numerical problems as well using these formulas.

## Measuring the resistance of a component – different ways

In this post, we are going to discuss different ways of measuring the resistance of a component. Resistance is defined as R = V/I. This obviously gives ways of measuring resistance, as in the circuits shown below. Each of the first 2 methods listed below uses both an ammeter and a voltmeter. And, the third […]

## Numerical problems on Resistivity with solution

This post presents a few important numerical problems in physics that you can solve using the concepts of resistivity. If you want a quick revision to memorize the resistivity formula then you can check this post on resistivity formula derivation. Note: Remember that: (1) resistivity is a property of the material (2) the unit of […]

## AC Waveforms of different types

Alternating Current,(AC) is a current that changes direction cyclically, passing first in one direction, then in the other through a circuit. Such alternating currents are produced by generators and other such voltage sources whose polarities alternate between a positive direction and a negative direction rather than being fixed in a constant direction as with DC […]

## Conductors & Insulators with examples & How do they differ?

In some materials, electrons move easily from atom to atom. In others, the electrons move with difficulty. And in some materials, it is almost impossible to get them to move. In this post, we will briefly talk about Conductors & Insulators to find out how they differ. Conductors An electrical conductor is a substance in […]

## Conservation of Charge & Energy in electrical Circuits

In this post, we will have some pointers on the Conservation of Charge & Energy in electrical Circuits. Charge Doesn’t ‘Leak Away’ Anywhere — it’s Conserved in electrical circuits. Energy is Conserved too. Charge Doesn’t ‘Leak Away’ Anywhere — it’s Conserved in electrical Circuits 1) As charge flows through a circuit, it doesn’t get used […]

## Ammeter and Voltmeter – definition & connection

Ammeters measure the current of a circuit, and voltmeters measure the voltage drop across a resistor. Ammeters and voltmeters are cleverly designed because it is important in the design to make sure that the use of these meters doesn’t change the circuit in such a way as to influence the readings. While both types of […]

## Kirchhoff’s first law | Kirchhoff’s Current Law (KCL) – Explained & derived

Gustav Kirchhoff, an eminent German physicist is the person behind Kirchhoff’s first law dealing with electric current. This law is also known as Kirchhoff’s Current Law or KCL. The KCL states that, for any point or node in an electrical circuit, the sum of currents into that point is equal to the sum of currents […]

## Numericals on Drift Velocity class 12

In this post, you will find solved Numericals on drift velocity for class 12. These numerical problems are based on the drift velocity of electrons and electric current.

## Internal Resistance of a Cell

Internal Resistance of a Cell

## How Small drift speed of electron causes high-speed electric current?

Most charge carriers, like electrons, move slowly. how the Small drift speed of electrons causes a high-speed electric current?

## Derive the relation between Current and Drift Velocity

Here we will derive the equation showing the relationship between current and drift velocity. The drift velocity is the average velocity of the free charges and it is in the direction opposite to the electric field for electrons.

## The resistivity of different materials – shown in a table

Resistivity values of silver, copper, aluminium, carbon, germanium, silicon, rubber, glass, etc. are listed in the above table.

Scroll to top
error: physicsTeacher.in