In this paper I present a novel supertask in a Newtonian universe that destroys and creates infinite masses and energies, showing thereby that we can have infinite indeterminism. Previous supertasks have managed only to destroy or create finite masses and energies, thereby giving cases of only finite indeterminism. In the Nothing from Infinity paradox we will see an infinitude of finite masses and an infinitude of energy disappear entirely, and do so despite the conservation of energy in all collisions. (...) I then show how this leads to the Infinity from Nothing paradox, in which we have the spontaneous eruption of infinite mass and energy out of nothing. I conclude by showing how our supertask models at least something of an old conundrum, the question of what happens when the immovable object meets the irresistible force. (shrink)
Bowin begins with an apparent paradox about Aristotelian infinity: Aristotle clearly says that infinity exists only potentially and not actually. However, Aristotle appears to say two different things about the nature of that potential existence. On the one hand, he seems to say that the potentiality is like that of a process that might occur but isn't right now. Aristotle uses the Olympics as an example: they might be occurring, but they aren't just now. On the other hand, (...) Aristotle says that infinity "exists in actuality as a process that is now occurring" (234). Bowin makes clear that Aristotle doesn't explicitly solve this problem, so we are left to work out the best reading we can. His proposed solution is that "infinity must be...a per se accident...of number and magnitude" (250). (Bryn Mawr Classical Review 2008.07.47). (shrink)
Aristotle is said to have held that any kind of actual infinity is impossible. I argue that he was a finitist (or "potentialist") about _magnitude_, but not about _plurality_. He did not deny that there are, or can be, infinitely many things in actuality. If this is right, then it has implications for Aristotle's views about the metaphysics of parts and points.
I advance a novel interpretation of Kant's argument that our original representation of space must be intuitive, according to which the intuitive status of spatial representation is secured by its infinitary structure. I defend a conception of intuitive representation as what must be given to the mind in order to be thought at all. Discursive representation, as modelled on the specific division of a highest genus into species, cannot account for infinite complexity. Because we represent space as infinitely complex, the (...) spatial manifold cannot be generated discursively and must therefore be given to the mind, i.e. represented in intuition. (shrink)
In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...) part” applied to all quantities (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The methodology uses a computational device called the Infinity Computer (patented in USA and EU) working numerically (recall that traditional theories work with infinities and infinitesimals only symbolically) with infinite and infinitesimal numbers that can be written in a positional numeral system with an infinite radix. It is argued that numeral systems involved in computations limit our capabilities to compute and lead to ambiguities in theoretical assertions, as well. The introduced methodology gives the possibility to use the same numeral system for measuring infinite sets, working with divergent series, probability, fractals, optimization problems, numerical differentiation, ODEs, etc. (recall that traditionally different numerals lemniscate; Aleph zero, etc. are used in different situations related to infinity). Numerous numerical examples and theoretical illustrations are given. The accuracy of the achieved results is continuously compared with those obtained by traditional tools used to work with infinities and infinitesimals. In particular, it is shown that the new approach allows one to observe mathematical objects involved in the Hypotheses of Continuum and the Riemann zeta function with a higher accuracy than it is done by traditional tools. It is stressed that the hardness of both problems is not related to their nature but is a consequence of the weakness of traditional numeral systems used to study them. It is shown that the introduced methodology and numeral system change our perception of the mathematical objects studied in the two problems. (shrink)
In two rarely discussed passages – from unpublished notes on the Principles of Philosophy and a 1647 letter to Chanut – Descartes argues that the question of the infinite extension of space is importantly different from the infinity of time. In both passages, he is anxious to block the application of his well-known argument for the indefinite extension of space to time, in order to avoid the theologically problematic implication that the world has no beginning. Descartes concedes that we (...) always imagine an earlier time in which God might have created the world if he had wanted, but insists that this imaginary earlier existence of the world is not connected to its actual duration in the way that the indefinite extension of space is connected to the actual extension of the world. This paper considers whether Descartes’s metaphysics can sustain this asymmetrical attitude towards infinite space vs. time. I first consider Descartes’s relation to the ‘imaginary’ space/time tradition that extended from the late scholastics through Gassendi and More. I next examine carefully Descartes’s main argument for the indefinite extension of space and explain why it does not apply to time. Most crucially, since duration is merely conceptually distinct from enduring substance, the end or beginning of the world entails the end or beginning of real time. In contrast, extension does not depend on any enduring substance besides itself. (shrink)
Bartha (2012) conjectures that, if we meet all of the other objections to Pascal’s wager, then the many-Gods objection is already met. Moreover, he shows that, if all other objections to Pascal’s wager are already met, then, in a choice between a Jealous God, an Indifferent God, a Very Nice God, a Very Perverse God, the full range of Nice Gods, the full range of Perverse Gods, and no God, you should wager on the Jealous God. I argue that his (...) requirement of [strongly] stable equilibrium is not well-motivated. There are other types of Gods, no less worthy of consideration than those that figure in Bartha’s deliberations, which are intuitively no worse wagers than the Jealous God. In particular, I have suggested that one does no worse to wager on a jealous cartel than one does to wager on a Jealous God. Moreover, I argue that there are other types of Gods, no less worthy of consideration than those that figure in Bartha’s deliberations, that make trouble for Pascal’s wager, but not because one would do better to wager on them rather than on a Jealous God. Finally, I argue that, if we suppose that infinitesimal credences are in no worse standing the infinite utilities, then we cannot accept the assumption—built into the relative utilities framework—that there cannot be infinitesimal credences. (shrink)
A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with traditional (...) methodologies studying infinities and infinitesimals only symbolically. The grossone methodology uses the Euclid’s Common Notion no. 5 ‘The whole is greater than the part’ and applies it to finite, infinite, and infinitesimal quantities and to finite and infinite sets and processes. It does not contradict Cantor’s and non-standard analysis views on infinity and can be considered as an applied development of their ideas. In this paper we consider infinite series and a particular attention is dedicated to divergent series with alternate signs. The Riemann series theorem states that conditionally convergent series can be rearranged in such a way that they either diverge or converge to an arbitrary real number. It is shown here that Riemann’s result is a consequence of the fact that symbol ∞ used traditionally does not allow us to express quantitatively the number of addends in the series, in other words, it just shows that the number of summands is infinite and does not allows us to count them. The usage of the grossone methodology allows us to see that (as it happens in the case where the number of addends is finite) rearrangements do not change the result for any sum with a fixed infinite number of summands. There are considered some traditional summation techniques such as Ramanujan summation producing results where to divergent series containing infinitely many positive integers negative results are assigned. It is shown that the careful counting of the number of addends in infinite series allows us to avoid this kind of results if grossone-based numerals are used. (shrink)
It is often alleged that Cantor’s views about how the set theoretic universe as a whole should be considered are fundamentally unclear. In this article we argue that Cantor’s views on this subject, at least up until around 1896, are relatively clear, coherent, and interesting. We then go on to argue that Cantor’s views about the set theoretic universe as a whole have implications for theology that have hitherto not been sufficiently recognised. However, the theological implications in question, at least (...) as articulated here, would not have satisfied Cantor himself. (shrink)
An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristotelian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian voluntarist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Cantor’s thought with (...) reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspectives on the Actual Infinite”) (1885). (shrink)
Though Spinoza's definition of God at the beginning of the Ethics unequivocally asserts that God has infinitely many attributes, the reader of the Ethics will find only two of these attributes discussed in any detail in Parts Two through Five of the book. Addressing this intriguing gap between the infinity of attributes asserted in E1d6 and the discussion merely of the two attributes of Extension and Thought in the rest of the book, Jonathan Bennett writes: Spinoza seems to imply (...) that there are other [attributes] – he says indeed that God or Nature has “infinite attributes.” Surprising as it may seem, there are reasons to think that by this Spinoza did not mean anything entailing that there are more than two attributes. In this paper I will argue that Bennett’s claim is fundamentally wrong and deeply misleading. I do think, however, that addressing Bennett’s challenge will help us better understand Spinoza’s notion of infinity. I will begin by summarizing Bennett’s arguments. I will then turn to examine briefly the textual evidence for and against his reading. Then I will respond to each of Bennett’s arguments, and conclude by pointing out theoretical considerations which, I believe, simply refute his reading. (shrink)
I tried to describe Infinity as a major natural conundrum known to man. The booklet also contains answers to some eternal questions, such as the meaning of life, faith, etc. I am especially proud of my Morality section.
The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds (...) to set-theory or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”. (shrink)
Hillel Steiner has recently attacked the notion of inalienable rights, basing some of his arguments on the Hohfeldian analysis to show that infinite arrays of legal positions would not be associated with any inalienable rights. This essay addresses the nature of the Hohfeldian infinity: the main argument is that what Steiner claims to be an infinite regress is actually a wholly unproblematic form of infinite recursion. First, the nature of the Hohfeldian recursion is demonstrated. It is shown that infinite (...) recursions of legal positions ensue regardless of whether inalienable rights exist or not. Second, the alleged problems that this might pose for the analysis are discussed. The conclusion is that one should not worry about the recursion as long as one understands correctly the role of the Hohfeldian analysis in normative reasoning. (shrink)
"The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
Un'esplorazione tra la storia scritta e la storia dei senza storia, alla ricerca di elementi che possano disfare le trame e le dialettiche del comando/assenso.
Un'esplorazione tra la storia scritta e la storia dei senza storia, alla ricerca di elementi che possano disfare le trame e le dialettiche del comando/assenso.
The concept of infinity is argued to contain self-contradictions. To maintain logical consistency, mathematics ought to abandon the notion of infinity. It is proposed that infinity should be replaced with the concept of “indefiniteness”. This further implies that other fields drawing on mathematics, such as physics and cosmology, ought to reject theories that postulate infinities of space and time. It is concluded that however indefinite our calculations of space and time become, the Universe must nevertheless be finite.
Abstract -/- The concept of infinity is of ancient origins and has puzzled deep thinkers ever since up to the present day. Infinity remains somewhat of a mystery in a physical world in which our comprehension is largely framed around the concept of boundaries. This is partly because we live in a physical world that is governed by certain dimensions or limits – width, breadth, depth, mass, space, age and time. To our ordinary understanding, it is a seemingly (...) finite world under those dimensions and we may find it difficult to comprehend something that by definition can have no beginning and no end, no limit or boundary. The article argues that this concept can have a meaning different from that normally envisaged in science, philosophy or mathematics, a meaning that transcends all boundaries and which proceeds from a non-material or metaphysical perspective. It examines the features and implications of that concept. -/- . (shrink)
God seemingly had a duty to create minds each of infinite worth through possessing God-like knowledge. People might object that God’s own infinite worth was all that was needed, or that no mind that God created could have truly infinite worth; however, such objections fail. Yet this does not generate an unsolvable Problem of Evil. We could exist inside an infinite mind that was one among endlessly many, perhaps all created by Platonic Necessity. “God” might be our name for this (...) Necessity, or for the infinite mind inside which we existed, or for an infinite ocean of infinite minds. (shrink)
Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. That (...) series rises to an absolutely infinite degree of that perfection. God has that absolutely infinite degree. We focus on the perfections of knowledge, power, and benevolence. Our model of divine infinity thus builds a bridge between mathematics and theology. (shrink)
There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer (...) is able to work numerically with finite, infinite, and infinitesimal numbers giving so the possibility to use different infinitesimals numerically and, in particular, to take advantage of infinitesimal values of h. To show the potential of the new framework a number of results is established. It is proved that the Infinity Computer is able to calculate derivatives of the solution y(x) and to reconstruct its Taylor expansion of a desired order numerically without finding the respective derivatives analytically (or symbolically) by the successive derivation of the ODE as it is usually done when the Taylor method is applied. Methods using approximations of derivatives obtained thanks to infinitesimals are discussed and a technique for an automatic control of rounding errors is introduced. Numerical examples are given. (shrink)
Can life be visually represented as a circle? Hegel states that true infinity, when visualized, takes the shape of a circle. The dissertation begins with a hypothesis, "does the progression to the true infinite reflect the notion of life itself?" Then, Hegel's notion of infinity is expanded and applied to the notion of life. This work is trying to explain human evolution and life itself.
This chapter contains sections titled: * Brief History * How We Talk * Science and Infinity * Religion and Infinity * Concluding Remarks * Notes * References * Further Reading.
In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major motivation (...) for operative logic and mathematics. In this article, we claim that this is in fact not the case. Rather, we argue for a shift that happened in Lorenzen’s treatment of the infinite from the early to the late 1950s. His early motivation for the development of operativism is concerned with a critique of the Cantorian notion of set and related questions about the notion of countability and uncountability; only later, his motivation switches to focusing on the concept of infinity and the debate about actual and potential infinity. (shrink)
There exist many applications where it is necessary to approximate numerically derivatives of a function which is given by a computer procedure. In particular, all the fields of optimization have a special interest in such a kind of information. In this paper, a new way to do this is presented for a new kind of a computer - the Infinity Computer - able to work numerically with finite, infinite, and infinitesimal number. It is proved that the Infinity Computer (...) is able to calculate values of derivatives of a higher order for a wide class of functions represented by computer procedures. It is shown that the ability to compute derivatives of arbitrary order automatically and accurate to working precision is an intrinsic property of the Infinity Computer related to its way of functioning. Numerical examples illustrating the new concepts and numerical tools are given. (shrink)
Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. (...) How can we quantify what do these words, more precious, mean? Can we introduce a counter that for any possible number of medals would allow us to compute a numerical rank of a country using the number of gold, silver, and bronze medals in such a way that the higher resulting number would put the country in the higher position in the rank? Here we show that it is impossible to solve this problem using the positional numeral system with any finite base. Then we demonstrate that this problem can be easily solved by applying numerical computations with recently developed actual infinite numbers. These computations can be done on a new kind of a computer – the recently patented Infinity Computer. Its working software prototype is described briefly and examples of computations are given. It is shown that the new way of counting can be used in all situations where the lexicographic ordering is required. (shrink)
Is there room enough in all creation for an 'Empty Universe Theory'? How should we view the realm in which we exist? Are the natures of matter and energy, their compositions and relationships with each other the fundamental key to the understanding of everything or is it something else? A thought on the true nature of the realm we really inhabit with some basic mathematical description of the relationship between the finite and the absolute as we are capable of understanding (...) it. (shrink)
The going-on problem (GOP) is the central concern of Wittgenstein's later philosophy. It informs not only his epistemology and philosophy of mind, but also his views on mathematics, universals, and religion. In section I, I frame this issue as a matter of accounting for intentionality. Here I follow Saul Kripke's lead. My departure therefrom follows: first, a criticism of Wittgenstein's “straight” conventionalism and, secondly, a defense of a solution Kripke rejects. I proceed under the assumption, borne out in the end, (...) that statements of rule-following have truth-conditions and are not, as Kripke seems willing to concede, merely "assertible" in circumstances of a specified sort. Ultimately, my goal is to demonstrate that intending can be understood in terms of an individual's dispositions rather than those of the community to which she belongs. (shrink)
In contrast to other ancient philosophers, Epicurus and his followers famously maintained the infinity of matter, and consequently of worlds. This was inferred from the infinity of space, because they believed that a limited amount of matter would inevitably be scattered through infinite space, and hence be unable to meet and form stable compounds. By contrast, the Stoics claimed that there was only a finite amount of matter in infinite space, which stayed together because of a general centripetal (...) tendency. The Roman Epicurean poet Lucretius tried to defend the Epicurean conception of infinity against this Stoic alternative view, but not very convincingly. One might suspect, therefore, that the Epicureans’ adherence to the infinity of matter was not so much dictated by physical arguments as it was motivated by other, mostly theological and ethical, concerns. More specifically, the infinity of atoms and worlds was used as a premise in several arguments against divine intervention in the universe. The infinity of worlds was claimed to rule out divine intervention directly, while the infinity of atoms lent plausibility to the chance formation of worlds. Moreover, the infinity of atoms and worlds was used to ensure the truth of multiple explanations, which was presented by Epicurus as the only way to ward off divine intervention in the realm of celestial phenomena. However, it will be argued that in all of these arguments the infinity of matter is either unnecessary or insufficient for reaching the desired conclusion. (shrink)
In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of (...) the concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems. (shrink)
Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border (...) between them. A special kind of invariance to the axiom of choice shared by quantum mechanics is discussed to be involved that border between the completeness and incompleteness of infinity in a consistent way. The so-called paradox of Albert Einstein, Boris Podolsky, and Nathan Rosen is interpreted entirely in the same terms only of set theory. Quantum computer can demonstrate especially clearly the privilege of the internal position, or “observer”, or “user” to infinity implied by Henkin’s proposition as the only consistent ones as to infinity. (shrink)
This article discusses some of Chateaubriand’s views on the connections between the ideas of formalization and infinity, as presented in chapters 19 and 20 of Logical Forms. We basically agree with his criticisms of the standard construal of these connections, a view we named “formal proofs as ultimate provings”, but we suggest an alternative way of picturing that connection based on some ideas of the late Wittgenstein.
Peter Walley argues that a vague credal state need not be representable by a set of probability functions that could represent precise credal states, because he believes that the members of the representor set need not be countably additive. I argue that the states he defends are in a way incoherent.
In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach does (...) not contradict Cantor. In contrast, it can be viewed as an evolution of his deep ideas regarding the existence of different infinite numbers in a more applied way. Site percolation and gradient percolation have been studied by applying the new computational tools. It has been established that in an infinite system the phase transition point is not really a point as with respect of traditional approach. In light of new arithmetic it appears as a critical interval, rather than a critical point. Depending on “microscope” we use this interval could be regarded as finite, infinite and infinitesimal short interval. Using new approach we observed that in vicinity of percolation threshold we have many different infinite clusters instead of one infinite cluster that appears in traditional consideration. (shrink)
Infinity exists as a concept but has no existence in actuality. For infinity to have existence in actuality either time or space have to already be infinite. Unless something is already infinite, the only way to become infinite is by an 'infinity leap' in an infinitely small moment, and this is not possible. Neither does infinitely small have an existence since anything larger than zero is not infinitely small. Therefore infinity has no existence in actuality.
Vehicle windshield wiper system increases the driving safety by contributing a clear shot viewing to the driver. In this paper, modelling, designing and simulation of a vehicle windshield wiper system with robust control theory is done successfully. H infinity loop shaping and robust pole placement controllers are used to improve the wiping speed by tracking a reference speed signals. The reference speed signals used in this paper are step and sine wave signals. Comparison of the H infinity loop (...) shaping and robust pole placement controllers based on the two reference signals is done and convincing results have been obtained. Finally the comparative results prove the effectiveness of the proposed H infinity Loop Shaping controller to improve the wiping mechanism for the given two reference signals. (shrink)
This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...) notions and proposes a more physical treatment of mathematical objects separating the objects from tools used to study them. It both offers a possibility to create new numerical methods using infinities and infinitesimals in floating-point computations and allows one to study certain mathematical objects dealing with infinity more accurately than it is done traditionally. In these notes, we explain that even though both methodologies deal with infinities and infinitesimals, they are independent and represent two different philosophies of Mathematics that are not in a conflict. It is proved that texts :539–555, 2017; Gutman and Kutateladze in Sib Math J 49:835–841, 2008; Kutateladze in J Appl Ind Math 5:73–75, 2011) asserting that the ①-based methodology is a part of non-standard analysis unfortunately contain several logical fallacies. Their attempt to show that the ①-based methodology can be formalized within non-standard analysis is similar to trying to show that constructivism can be reduced to the traditional Mathematics. (shrink)
The seventeenth century was an important period in the conceptual development of the notion of the infinite. In 1643, Evangelista Torricelli (1608-1647)—Galileo’s successor in the chair of mathematics in Florence—communicated his proof of a solid of infinite length but finite volume. Many of the leading metaphysicians of the time, notably Spinoza and Leibniz, came out in defense of actual infinity, rejecting the Aristotelian ban on it, which had been almost universally accepted for two millennia. Though it would be another (...) two centuries before the notion of the actually infinite was rehabilitated in mathematics by Dedekind and Cantor (Cauchy and Weierstrass still considered it mere paradox), their impenitent advocacy of the concept had significant reverberations in both philosophy and mathematics. In this essay, I will attempt to clarify one thread in the development of the notion of the infinite. In the first part, I study Spinoza’s discussion and endorsement, in the Letter on the Infinite (Ep. 12), of Hasdai Crescas’ (c. 1340-1410/11) crucial amendment to a traditional proof of the existence of God (“the cosmological proof” ), in which he insightfully points out that the proof does not require the Aristotelian ban on actual infinity. In the second and last part, I examine the claim, advanced by Crescas and Spinoza, that God has infinitely many attributes, and explore the reasoning that motivated both philosophers to make such a claim. Similarities between Spinoza and Crescas, which suggest the latter’s influence on the former, can be discerned in several other important issues, such as necessitarianism, the view that we are compelled to assert or reject a belief by its representational content, the enigmatic notion of amor Dei intellectualis, and the view of punishment as a natural consequent of sin. Here, I will restrict myself to the issue of the infinite, clearly a substantial topic in itself. (shrink)
We construct a mathematization of Derridian "arche-writing" and Deleuzian "haecceity." We posit an infinity-categorification of exigency (infinity-exigency), a higher-dimensional visual epistemology (infinity-visual epistemology), and infinity-stack Wittgenstein ladder. We reframe haecceities in terms of diamonds, in the sense of Scholze, and mathematize the haecceity-and-arche-writing reflection as a pro-diamond. As an exercise in infinity-visual epistemology, we validate a diamond infinity-stack time signature and infinity-stack harmony.
We construct a mathematization of Derridian "arche-writing" and Deleuzian "haecceity." We posit an infinity-categorification of exigency (infinity-exigency), a higher-dimensional visual epistemology (infinity-visual epistemology), and infinity-stack Wittgenstein ladder. We reframe haecceities in terms of diamonds, in the sense of Scholze, and mathematize the haecceity-and-arche-writing reflection as a pro-diamond. As an exercise in infinity-visual epistemology, we validate a diamond infinity-stack time signature and infinity-stack harmony.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.