Numerical Problems for Class 9 Motion

Let's dive into a selection of motion numerical problems to hone your skills and deepen your understanding of these fundamental concepts.

1) A car starts from rest and accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds. Calculate its final velocity.
2) A ball is dropped from a height of 40 meters. Calculate the time it takes to hit the ground.
3) An object travels at a constant velocity of $15 \mathrm{~m} / \mathrm{s}$ for 10 seconds. Calculate the total distance it covers.
4) A bicycle accelerates from 0 to $10 \mathrm{~m} / \mathrm{s}$ in 4 seconds. Calculate its acceleration.
5) A train decelerates from $25 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 15 seconds. Calculate its acceleration.
6) A car travels 200 meters in 20 seconds. Calculate its average speed.
7) A rocket accelerates at $20 \mathrm{~m} / \mathrm{s}^{2}$ for 8 seconds. Calculate its final velocity.
8) An object accelerates at a rate of $-5 \mathrm{~m} / \mathrm{s}^{2}$. Calculate its deceleration.
9) A stone is thrown horizontally from a cliff 25 meters high. Calculate the time it takes to reach the ground.
10) A sprinter covers 100 meters in 10 seconds. Calculate his average speed.
11) A car moves with a constant velocity of $30 \mathrm{~m} / \mathrm{s}$ for 2 minutes. Calculate the distance it covers.
12) A skateboarder accelerates from $4 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$ in 2 seconds. Calculate the acceleration.

Physicsteacher.in portal for K12 and engineering students presents:
13) A plane accelerates from 0 to $300 \mathrm{~m} / \mathrm{s}$ in 20 seconds. Calculate its acceleration.
14) A cyclist travels 3 km in 15 minutes. Calculate his average speed.
15) A spaceship accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ for 30 seconds. Calculate its final velocity.
16) A stone is thrown vertically upwards with $50 \mathrm{~m} / \mathrm{s}$ velocity. Calculate the time it takes to return to the ground.
17) A car accelerates at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the time it takes to reach a speed of $20 \mathrm{~m} / \mathrm{s}$.
18) A train decelerates from $20 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 10 seconds. Calculate its deceleration.
19) A cyclist covers 15 km in 45 minutes. Calculate his average speed.
20) A rocket accelerates at $50 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds. Calculate its final velocity.
21) A stone is thrown horizontally from a height of 15 meters. Calculate the time it takes to hit the ground.
22) A car moves with a constant velocity of $18 \mathrm{~m} / \mathrm{s}$ for 3 minutes. Calculate the distance it covers.
23) A scooter accelerates from $5 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$ in 3 seconds. Calculate the acceleration.
24) A plane accelerates from 0 to $500 \mathrm{~m} / \mathrm{s}$ in 30 seconds. Calculate its acceleration.
25) A jogger covers 5 km in 25 minutes. Calculate their average speed.

